NewFrac Objetive

The main research objective of the NEWFRAC network is the development of a new modeling and simulation framework for the fracture mechanics optimization of high-level technological products involving heterogeneous systems (materials and structures), employed in engineering fields of strategic societal and scientific impact, ranging from renewable energy production systems to biological hard tissues.

This main objective will be achieved through the two following specific objectives:

1
To make a significant step forward on the key issues in FFM and PF, that will allow developing general computational tools able to solve complex fracture problems described above.
2
To confront these computational tools with challenging real-world fracture problems and applications which will provide the necessary feedback to upgrade these computational tools to obtain really predictive tools, which are robust, reliable and efficient, and thus useful in strategic industrial sectors.

Individual Research Projects (IRPs)

This scientific achievement will be carried out by training future experts, who will assimilate the required capacities and competences of analysis under the guidance of reputed researchers and professionals.

NewFrac Training Network Project

To achieve these targets, NEWFRAC will support 13 Early Stage Researchers (ESRs) who will be trained to conduct a breakthrough research in fracture modeling engaging interdisciplinary academic and industrial activities.

Transfer of knowledge to industrial sectors will be performed through a close cooperation (Each ESR will be exposed at least for 4 months to working in non-academic sector, industry or hospital) with two leader industrial Beneficiaries (Robert Bosch GmbH and Fundación Investigación, Desarrollo y Aplicación de Materiales Compuestos “FIDAMC”) and three industrial Partner Organisations (BOTTERO, CUBICOFF and SAFRAN).

ESR project

Host Institution

Application status

Expected start date

Details

IRP/ESR 1: Total energy minimization with stress conditions for mixed mode fracture in anisotropic heterogeneous materials and structures

Universidad de Sevilla (Spain)

Closed

01/11/2020

IRP/ESR 2: Toughening composites by micro and meso structural optimization

Universidad de Sevilla (Spain)

Closed

01/11/2020

IRP/ESR 3: Fracture analysis of advanced layered ceramics

Sorbonne Université (France)

Closed

01/11/2020

IRP/ESR 4: Fracture of LFRP ultra-thin ply laminates in aeronautical applications

Universidade do Porto (Portugal) 

Closed

02/11/2020

IRP/ESR 5: Nucleation and propagation of compressive cracks

Sorbonne Université (France)

Closed

01/11/2020

IRP/ESR 6: Multiscale modeling of fracture processes in injection molded SFRPs

Robert Bosch GmbH (Germany)

Closed

01/11/2020

IRP/ESR 7: Debonding of the reinforcement in LFRP externally strengthened curved beams

Politecnico di Torino (Italy)

Closed

02/11/2020

IRP/ESR 8: Fracture in biological anisotropic hard tissues (human bones)

Tel-Aviv University (Israel)

Closed

01/11/2020

IRP/ESR 9: Multi-field and multi-scale modeling of fracture for renewable energy applications

IMT School for Advanced Studies Lucca (Italy)

Closed

02/11/2020

IRP/ESR 10: PF modeling of fracture in the human femur

Eidgenoessische Technische Hochschule Zürich (Switzerland)

Closed

01/11/2020

IRP/ESR 11: Analysis of the failure mechanisms associated to the unfolding failure in CFRP profiles

Fundación Investigación, Desarrollo y Aplicación de Materiales Compuestos (Spain)

Closed

01/11/2020

IRP/ESR 12: Fracture in fibre-reinforced thermoplastics (FRTPs) across the scales

Universidade do Porto (Portugal)

Closed

02/11/2020

IRP/ESR 13: Phase Field and Finite Fracture Mechanics for dynamic crack propagation and delamination in brittle materials and composites

Politecnico di Torino (Italy)

Closed

02/11/2020